Detailed Class Information

Elem Organic Chem Lab II - 44290 - CH 338 - 001

Associated Term: Fall 2014
Levels: Undergraduate

Main Campus (Tuscaloosa) Campus
Lecture Schedule Type
Traditional Instructional Method
2.000 Credits
View Syllabus
View Catalog Entry

Registration Availability

<table>
<thead>
<tr>
<th>Seats</th>
<th>Capacity</th>
<th>Actual</th>
<th>Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>44</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Base fees (other charges may apply)

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>CHEMISTRY COURSE FEE</td>
<td>40.00</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>ARTS & SCIENCE COLLEGE FEE</td>
<td>20.00</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>A & S FACIL./TECH COLLEGE FEE</td>
<td>19.00</td>
</tr>
</tbody>
</table>

Restrictions:
May not be enrolled in one of the following Campuses:
 English Language Institute

Prerequisites:
Undergraduate level CH 232 Minimum Grade of D- and Undergraduate level CH 237 Minimum Grade of D-

Return to Previous

RELEASE: 8.5.1
Elem Organic Chem Lab II

CH 338 Section 001
Fall 2014, Lecture
Dr. Diana Leung

Office Hours and Contact Information

Office Hours: F: 11 AM – 12 PM, or by appointment

Prerequisites

UA Course Catalog Prerequisites

Prerequisite(s): CH 232 and CH 237.

Course Description

UA Course Catalog Information
A one-hour lecture and five-hour laboratory. The course is designed for chemistry majors. Usually offered in the fall semester. Writing proficiency within this discipline is required for a passing grade in this course.

Core Designations:
Writing

Student Learning Outcomes

Objective:
To provide knowledge and practical understanding of general reactions in organic chemistry and to provide the tools for multi-step synthetic schemes. Furthermore, writing proficiency within this discipline is required for a passing grade in this course.

Learning Outcomes:
Upon the completion of this semester, students should be able to (a) predict the correct products for a given reaction; (b) choose appropriate reaction conditions for any desired organic transformation; (c) be competent in designing, setting-up, and executing a given organic reaction; (d) display a general understanding of spectroscopic techniques and how they are utilized in organic chemistry; and (e) exhibit a general understanding of reaction mechanisms.

Required Texts

UA Supply Store Textbook Information

- LEHMAN / OPERATIONAL ORGANIC CHEMISTRY (Required)
- CHEMICAL EDUC / ORGANIC CHEMISTRY LABORATORY NOTEBOOK (NEW ONLY) (Required)
- LEHMAN (RENTAL) / (RENTAL) OPERATIONAL ORGANIC CHEMISTRY (RENTAL)

Other Course Materials

Prelab: (~5% of lab report grade)

An outline of the experiment to be performed in lab must be written (in blue or black ink) in your notebook
before coming to lab. A more detailed description can be found on the next page.

The outline should include:

- title of the experiment
- a reference for the experiment (to the textbook)
- balanced equations for reactions that are being performed (if applicable)
- a table of reagents with the amount of reagents to be used computed (see last page)
- a short description of the problem to be addressed
- the planned approach to answering the problem in the book scenario
- the procedure to be followed in the experiment written on the left-hand side of the page in outline form

!!! Your equipment drawer will not be unlocked until you have had your prelab checked and signed by your lab TA !!!

Laboratory notebooks: Use blue or black ink.

You should record any observations and data in your notebook immediately. Those related to the procedure written in the prelab can be recorded on the right-hand side of the page, next to the appropriate entry. All isolated products should be labeled with your name and turned in to the TA. A teaching assistant must sign your notebook before you leave the laboratory. Do not use white out, cross out any mistakes.

Participation/Attitude: (10% of lab report grade)

You are expected to come to lab prepared to perform your experiment. Furthermore, you are required to work in a safe manner and clean up after yourself. Therefore, 10% of your lab report grade will be based upon a participation/attitude grade assigned each lab period by your lab TA. Failure to meet these expectations will result in loss of points or removal from the lab.

Laboratory Reports:

Lab reports are due at the beginning of lab on the date indicated in the class schedule (see below) and should be typed for clarity’s sake. Reports not turned in at the beginning of lab will be considered late. Late reports will be penalized 10% per weekday until turned in. Electronic copies will not be accepted. Late lab reports should be turned into your grading TA, please contact them directly.

Staple all the material before turning in the lab report. Write your **Registration Name**, not your preferred name, the grading TA will not know your preferred name. **Write your lab section #, lab TA’s name in the front.**

Your reports should include (see below):
carbon copies of your notebook pages containing your prelab assignment, observations, and data

Introduction – describing the problem, goal of the experiment, and the means which you would solve the problem (not the exact procedure, mainly the techniques used).

Tabulated Results -
- Measurements – melting point, mass of product, etc.
- theoretical and actual yield calculations when applicable
- Theoretical Yield: The theoretical amount of product that should be formed based on the amounts of reactant (limiting reagent) actually used. This should be expressed in moles, but mass is also acceptable.
- Actual yield: The amount of product that was isolated. This should be expressed in moles, but mass is also acceptable.
- Percent Yield:
- Show all calculations (% yield, Rf, etc.) to obtain partial credit.
- interpretations of spectral data and other measurements of product identity and purity (ex: melting points, boiling points, Rf, etc.)

Discussion of Results: Write a succinct description of what happened. Write reaction mechanisms when appropriate. Present spectral characterizations and measured physical properties (mp, etc). Compare these to those expected for the product (literature values) and comment on any discrepancies and why you saw them. Include copies of any spectra that were recorded.

Conclusion: What is your conclusion to the goal or the problem?

For each lab a handout will be posted on Blackboard.
Handouts will note any changes to the experiment, look at the handouts before writing out prelabs.
The handout will outline specific items to discuss in your lab report. You should place them in the appropriate sections of the lab report (Introduction, Results, Discussion, Conclusion, etc.)
Handouts may also contain questions to answer from the textbook. Answers to these questions should be attached to the end of your lab report (typed).
Chemical structures and mechanisms must be drawn out using ChemBioDraw in lab reports (not prelabs). Instructions to obtain this software can be found on Blackboard.
NMR, and IR spectra must be labeled.
Print the spectrum and draw the structure on the spectrum (you do not need to use ChemBioDraw for this), and label the corresponding signals to the molecule.
Prelab outline

1. **Title:** Example: Separation of the components of “Panacetin”

3. **Reaction(s) or chemical structures:** Write a balanced chemical equation for all reactions to be performed. If a reaction is not carried out, draw the chemical structures of key compounds used.

 Example:

4. **Table of Reagents:** A table should be set up listing the reagents, the molecular weight of each compound to be used, the amount (mass or volume) to be used, the number of moles that this amount represents (except for solvents), and pertinent physical properties (bp, mp, density, etc.). For solvents, list amounts to be used (if applicable) and physical data (bp and densities), but you do not need to determine the number of moles. Also include in a table of reagents a row for the molecular weight and physical properties of the product. Finally, make a note of any hazards associated with any of the materials to be used. During lab, you should note the actual amounts used next to each reagent in the table of reagents, and the amount of product recovered in the product row.

<table>
<thead>
<tr>
<th>Compound</th>
<th>MW (g/mol)</th>
<th>Moles to be used</th>
<th>Amount to be used</th>
<th>Actual Amount Used</th>
<th>moles used</th>
<th>Physical Constants</th>
<th>Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-chlorocyclohexanol</td>
<td>134.60</td>
<td>74.3 mmol</td>
<td>10.0 g</td>
<td></td>
<td></td>
<td>mp = 48°C</td>
<td>Skin irritant</td>
</tr>
<tr>
<td>acetic acid</td>
<td>60.10</td>
<td>1 drop</td>
<td></td>
<td></td>
<td></td>
<td>bp = 82°C d = 0.875</td>
<td>corrosive</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>60.05</td>
<td>60 - 70 mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>corrosive</td>
</tr>
<tr>
<td>cyclohexene (product)</td>
<td>82.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mp = 189°C</td>
<td></td>
</tr>
</tbody>
</table>

5. **Procedure:** Write a description of the procedure to be used. This description should provide enough detail that the experiment could be carried out with only this information. This section should be written on the left hand side of the page to provide room on the right hand side to record any changes made to the procedure.
and observation.

6. Observations: Describe any important events that occur that are not written in the procedure. The actual amounts of chemicals used should be recorded to the right of the appropriate line in your procedure. Any measured physical properties (mp, R_f, etc) should be entered where appropriate.

University “W” Course

First and foremost, "writing proficiency within this discipline is required for a passing grade in this course." Written assignments will require coherent and logical prose. All assignments must be carefully edited for spelling and grammar. The students’ writing will be graded and commented upon and become part of the assigned grade. A student who does not write with the skill normally required of an upper division student in the discipline will not be given a passing grade, no matter how well the student performs on other course requirements.

There are two individual written (W) assignments for this course:

1. 1. Experiment 4 (100 points)

endo- vs. *exo*-Stereochemistry in the Diels-Alder reaction (due Oct. 9th)

1. 2. Experiment 6 (150 points)

Multi-step synthesis of lidocaine (due Nov. 13th)

The (W) assignments will utilize ChemBioDraw 12.0 Ultra and the ACS-template for *Organic Letters*. ChemBioDraw and the template are available free of charge to all UA students. Please see the course home page for downloading instructions. Instructions to obtain and use these software and template is available on Blackboard.

Your grades on (W) assignments will be evaluated on higher level critical thinking skills, such as analysis and synthesis of ideas. In addition, clarity in technical writing and presentation of the given topic will be evaluated as well.

Items to address as soon as possible:

1) Download the ACS style template. Directions are posted on Blackboard, Handout Tab
2) Download ChemBioDraw and MestReNova. Directions are posted on Blackboard, Handout Tab.

1. MestReNova – will be necessary for many lab reports. It is used to process NMR data.
2. MestReNova comes with ChemBioDraw. If you have not downloaded ChemBioDraw, make sure to install
both softwares. If you have downloaded ChemBioDraw, there are directions for that on Blackboard as well.

3. It takes a couple of days to get the license key for MestReNova, so you should get these programs as soon as possible.

Outline of Topics

Tentative Lecture and Laboratory Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Experiment</th>
<th>Reading Assignment**</th>
<th>Report Due at the beginning of lab</th>
<th>Quiz (Thursday’s lecture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 20</td>
<td>Check-In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendices, I-VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug. 28*</td>
<td>Experiment 1 (50 points)</td>
<td>Safety section of Introduction (pg. 14 – 30)</td>
<td></td>
<td>Safety Quiz</td>
</tr>
<tr>
<td></td>
<td>Synthesis of aspirin and TLC analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 4</td>
<td>Experiment 2 (100 points)</td>
<td>Experiment 46 (pg. 371 – 380)</td>
<td>Experiment 1 (50 points)</td>
<td>Prelab Quiz 1 – Exp. 1, 2</td>
</tr>
<tr>
<td></td>
<td>Synthesis of a mosquito repellant: \textit{N,N-diethyl-m-toluamide} (DEET)</td>
<td>Operations: 7, 8, 10, 11, 18, 19, 21, 24, 25, 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 11</td>
<td>Complete Experiment 2</td>
<td></td>
<td></td>
<td>Prelab Quiz 2 – Exp. 2</td>
</tr>
<tr>
<td></td>
<td>Experiment 3 (50 points, take home)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture – Meet in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 18</td>
<td>Shelby 1092</td>
<td>No lab instead we will be in the computer lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChemLit Handout on Blackboard</td>
<td>3:30 PM - Meet in the Rodgers Computer Lab--The chemical literature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experiment 2</td>
<td>(100 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 3 – Exp. 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 4 – Exp. 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experiment 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(50 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp. 3, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 25</td>
<td>Experiment 4</td>
<td>(100 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 4 – Exp. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handout on Blackboard</td>
<td>Experiment 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 2</td>
<td>Complete Experiment 4</td>
<td>(50 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 9</td>
<td>Experiment 5</td>
<td>(100 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 6 – Exp. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handouts on Blackboard</td>
<td>Experiment 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp. 4, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 16</td>
<td>Complete Experiment 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 7 – Exp. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 23</td>
<td>Experiment 6</td>
<td>(150 points)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 8 – Exp. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handout on Blackboard</td>
<td>Experiment 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct. 30†</td>
<td>No Lecture; No lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov. 6</td>
<td>Complete Experiment 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prelab Quiz 9 – Exp. 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exams and Assignments

Quizzes and Examinations:

During the second lecture (August 28th) there will be a safety quiz (50 points) covering safety features in the labs, safe lab practices, and use of safety equipment in lab.

Pre-lab quizzes (short 10 point quiz) will be given near the end of every lecture. The questions are open ended, with 2 – 3 questions per pre-lab quiz. The quizzes will primarily cover material from the previous lecture as well as the lab to be performed that day/week. Questions will typically relate to the reaction being conducted, not exact procedures or steps you will take during lab. There are 11 prelab quizzes, one will be extra credit.

The final exam given on December 4th, 12:30 PM – 1:20 PM (Shelby 1092), covering material from class lectures, lab reports, experimental setup, spectroscopic techniques, and the experiments carried out during the semester. The questions are open ended.

Pre-labs:

An outline of the experiment to be performed in lab must be written in your lab notebook before coming to lab.

*Last day to drop a course without a grade of “W” is Wed. August 27th.

†Last day to drop a course with a grade of “W” is Wed. Oct. 27th.

**Reading assignment – Operation sections are located near the back of the book.
A more detailed description can be found below. Pre-labs are required for every experiment. Students without completed pre-labs will not be allowed into lab, and will be given a grade of zero for the lab and lab report.

Lab Reports:

A written lab report is required for each experiment. They must be typed for clarity and are due at the beginning of lab to your lab TA on the date indicated in the class schedule. Reports not turned in at the beginning of lab will be considered late. Late lab reports will be penalized 10% per weekday until turned in. Electronic copies will not be accepted. Late lab reports should be turned into your grading TA, please contact them directly.

Graded lab reports will be returned by the lab TA the following lab meeting from when they were due. If you do not get a lab report back from your lab TA, but you believe you had turned it in, this means that the TA may not have received your lab report. Make sure that you resolve this issue with the lab TA as soon as possible. **All questions about grading of lab reports must first be taken to your grading TA.**

A couple of exceptions to the above policies on lab reports are, lab reports 4 and 6 will be graded by the instructor. Late lab reports 4 and 6 should be turned into the instructor, and any questions about lab report 4 and 6 grades should be taken to the instructor.

Regrades:

Students are allowed 7 days (by 5 PM) after lab reports or quizzes are returned to obtain a regrade. Regrade on lab reports should be given to your grading TA (except for lab reports 4 and 6). The entire lab report will be regraded.

Quizzes will be graded by the instructor. Request for regrade of quizzes will need to be brought to the instructor. Regrade of quizzes will only be considered if students used a pen (no red pens or whiteouts). There is no regrade for quizzes written in pencil.

Safety:

ALL safety rules must be followed at all times. Failure to comply will result in immediate expulsion from the laboratory. **All** accidents and injuries, regardless of how minor, must be immediately reported to a teaching assistant.

Stockroom Policy:

No transactions can be carried out at the stockroom unless you present a valid student Action Card. The stockroom does not accept cash, only Bama Cash will be accepted.
Laboratory Check-out:

Check-out from CH 338 will be during lab time on December 4th and is required for all students who were initially registered and checked-in. If you drop this class, you must still check-out. Failure to check-out will result in a $650 fee, which will be charged to your student account.

Grading Policy

Grades:

<table>
<thead>
<tr>
<th></th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Reports</td>
<td>650 pts</td>
</tr>
<tr>
<td>Safety Quiz</td>
<td>50 pts</td>
</tr>
<tr>
<td>Pre-lab Quizzes</td>
<td>100 pts</td>
</tr>
<tr>
<td>Final Exam</td>
<td>100 pts</td>
</tr>
<tr>
<td>Total</td>
<td>900 pts</td>
</tr>
</tbody>
</table>

Grading Scale:

<table>
<thead>
<tr>
<th>Percentage Score</th>
<th>Points</th>
<th>Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% – 90%</td>
<td>900 – 810</td>
<td>A+ / A / A-</td>
</tr>
<tr>
<td>89.9 – 80%</td>
<td>809.9 – 720</td>
<td>B+ / B / B-</td>
</tr>
<tr>
<td>79.9 – 70%</td>
<td>719.9 – 630</td>
<td>C+ / C / C-</td>
</tr>
<tr>
<td>69.9% – 60%</td>
<td>629.9 – 540</td>
<td>D+ / D / D-</td>
</tr>
<tr>
<td>< 60%</td>
<td>539.9 – 0</td>
<td>F</td>
</tr>
</tbody>
</table>

"+"s and "-" will be decided at the instructor's discretion.

Any scaling of grades will be done at the end of the semester and at the discretion of the instructors.
Because this is out of your control, DO NOT RELY ON A SCALE BEING APPLIED TO YOUR SCORES!

Policy on Missed Exams & Coursework

Attendance:

Attendance at all lectures and laboratories is mandatory. There will be no make-up labs. If a lab is missed, a grade of zero for the lab will be assigned unless the absence is determined by the instructor to be excused. **Excused absences will be granted only with a legitimate, documented excuse** (such as illness). You should notify the instructor and your lab TA as early as possible. In these cases, **make-up labs will not be given**; instead you will be provided with experimental data sufficient to complete the lab report, but you will lose participation points for that lab meeting. It is also your responsibility to turn in any lab reports that were due during the missed lab meeting as soon as you return to school. You should hand-deliver the lab report to your grading TA. Missing three or more lab meetings for any reason (even excused absences) will result in an automatic failure in the course. You are expected to be present for the entire lab meeting period, until you have completed the experiment. You will not be allowed to start experiments if you are more than 15 minutes late to lab, and it will be considered an unexcused absence.

Lab Reports:

A written lab report is required for each experiment. They must be typed for clarity and are due at the beginning of lab to your lab TA on the date indicated in the class schedule. Reports not turned in at the beginning of lab will be considered late. Late lab reports will be penalized 10% per weekday until turned in. Electronic copies will not be accepted. Late lab reports should be turned into your grading TA, please contact them directly.

Graded lab reports will be returned by the lab TA the following lab meeting from when they were due. If you do not get a lab report back from your lab TA, but you believe you had turned it in, this means that the TA may not have received your lab report. Make sure that you resolve this issue with the lab TA as soon as possible. **All questions about grading of lab reports must first be taken to your grading TA.**

A couple of exceptions to the above policies on lab reports are, lab reports 4 and 6 will be graded by the instructor. Late lab reports 4 and 6 should be turned into the instructor, and any questions about lab report 4 and 6 grades should be taken to the instructor.

Attendance Policy

Attendance:

Attendance at all lectures and laboratories is mandatory. There will be no make-up labs. If a lab is missed, a grade of zero for the lab will be assigned unless the absence is determined by the instructor to be excused. **Excused absences will be granted only with a legitimate, documented excuse** (such as illness). You should notify the instructor and your lab TA as early as possible. In these cases, **make-up labs will not be given**; instead you will be provided with experimental data sufficient to complete the lab report, but you will lose participation points for that lab meeting. It is also your responsibility to turn in any lab reports...
that were due during the missed lab meeting as soon as you return to school. You should hand-deliver the lab report to your grading TA. Missing three or more lab meetings for any reason (even excused absences) will result in an automatic failure in the course. You are expected to be present for the entire lab meeting period, until you have completed the experiment. You will not be allowed to start experiments if you are more than 15 minutes late to lab, and it will be considered an unexcused absence.

Emergency Contact Information

UA's primary communication tool for sending out information is through its web site at www.ua.edu. In the event of an emergency, students should consult this site for further directions. Additional course information will be posted using Blackboard Learn.

Severe Weather Guidelines

The guiding principle at The University of Alabama is to promote the personal safety of our students, faculty and staff during severe weather events. It is impossible to develop policies which anticipate every weather-related emergency. These guidelines are intended to provide additional assistance for responding to severe weather on campus.

UA is a residential campus with many students living on or near campus. In general classes will remain in session until the National Weather Service issues safety warnings for the city of Tuscaloosa. Clearly, some students and faculty commute from adjacent counties. These counties may experience weather related problems not encountered in Tuscaloosa. Individuals should follow the advice of the National Weather Service for that area taking the necessary precautions to ensure personal safety. Whenever the National Weather Service and the Emergency Management Agency issue a warning, people in the path of the storm (tornado or severe thunderstorm) should take immediate life saving actions.

When West Alabama is under a severe weather advisory, conditions can change rapidly. It is imperative to get to where you can receive information from the National Weather Service and to follow the instructions provided. Personal safety should dictate the actions that faculty, staff and students take.

The Office of University Relations will disseminate the latest information regarding conditions on campus in the following ways:

- Weather advisory posted on the UA homepage
- Weather advisory sent out through UA Alerts to faculty, staff and students
- Weather advisory broadcast over WVUA at 90.7 FM
- Weather advisory broadcast over Alabama Public Radio (WUAL) at 91.5 FM
- Weather advisory broadcast over WVUA-TV/WUOA-TV, and on the website at http://wvuatv.com/content/weather. WVUA-TV Home Team Weather provides a free service you can subscribe to which allows you to receive weather warnings for Tuscaloosa via e-mail or cell phone. Check http://wvuatv.com/content/free-email-weather-alerts for more details and to sign up for weather alerts.
In the case of a tornado warning (tornado has been sighted or detected by radar; sirens activated), all university activities are automatically suspended, including all classes and laboratories. If you are in a building, please move immediately to the lowest level and toward the center of the building away from windows (interior classrooms, offices, or corridors) and remain there until the tornado warning has expired. Classes in session when the tornado warning is issued can resume immediately after the warning has expired at the discretion of the instructor. Classes that have not yet begun will resume 30 minutes after the tornado warning has expired provided at least half of the class period remains.

Disability Statement

If you are registered with the Office of Disability Services, please make an appointment with me as soon as possible to discuss any course accommodations that may be necessary.

If you have a disability, but have not contacted the Office of Disability Services, please call (205) 348-4285 (Voice) or (205) 348-3081 (TTY) or visit 133-B Martha Parham Hall East to register for services. Students who may need course adaptations because of a disability are welcome to make an appointment to see me during office hours. Students with disabilities must be registered with the Office of Disability Services, 133-B Martha Parham Hall East, before receiving academic adjustments.

Policy on Academic Misconduct

All students in attendance at The University of Alabama are expected to be honorable and to observe standards of conduct appropriate to a community of scholars. The University of Alabama expects from its students a higher standard of conduct than the minimum required to avoid discipline. At the beginning of each semester and on examinations and projects, the professor, department, or division may require that each student sign the following Academic Honor Pledge: “I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedure resulting from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.”

See the Code of Student Conduct for more information.